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Abstract

In this paper, the analysis of the free vibration of thin laminated skew plates with fully clamped edges is investigated. The

governing differential equation for skew plate is obtained by transforming the differential equation in Cartesian

coordinates into skew coordinates. The natural frequencies of the plate are then calculated by using the finite strip

transition matrix method. The numerical results are obtained for different values of skew angles, fiber orientation angles

and for different composites laminates. Comparisons have been made with the available results in the literature which

show the accuracy and efficiency of the method.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Skew plates are widely used in many engineering applications such as aircraft wings, marine industries, and
as intersection elements in many bridges and highways. In the recent decades, composite structures are used
widely in aerospace and other industries due to their high strength-to-weight ratios. In order to have an
efficient and reliable design, it is essential to predict the vibration frequencies of such structural elements.
Rectangular composite plates have been investigated extensively in the literature on the other hand skew
composite plates have received relatively less interest. A useful and extensive survey has been provided by Leiw
and Wang [1] on the vibration of isotropic and orthotropic skew plates. In general, the exact solutions of
laminated skew plates are somehow complicated or impossible to obtain. Hence the analysis of the vibration
of laminated skew plates has been carried out by different numerical techniques. For example Krishnan and
Deshpanda [2] used the finite element method to study the free vibration of skew isotropic plates, single layer
laminas and three-layered cross-ply laminates. Kapania and Singhvi [3] used Rayleigh–Ritz method to analyze
the vibration of tapered thickness, skew laminated plates. The free vibration of fully clamped symmetrically
laminated skew plate is studied by Hosokawa et al. [4] using the Green’s function approach. Wang [5] has
applied the B-spline Rayleigh–Ritz method to investigate the free vibration of thin skew fiber-reinforced
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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composite laminates. Also Han and Dickinson [6] applied Ritz approach for analyzing the vibration of
symmetrically laminated composite skew plates. The free vibration analysis of skew laminated composite
plates with simply supported and clamped edges is obtained by Reddy and Palaninathan [7] using the finite
element method. The p-Ritz method is adopted by Wang et al. [8] for analyzing the free vibration of skew
sandwich plates with laminated facing. The vibration of skew laminated composite plates with simply
supported and clamped edges has been studied by Anlas and Goker [9] using orthogonal polynomials with
Ritz method. Recently, Park [10] performed a structural dynamic analysis of skew sandwich plate with
laminated composite faces based on the high-order shear deformation plate theory (HSDT). Using a
differential quadrature (DQ) method, large amplitude free vibration analysis of laminated composite skew
thin plates have been considered by Malekzadeh [11].

In the present paper, the finite strip transition matrix method [12–15], is employed to investigate the free
vibration of thin symmetrically skew laminated plate with fully clamped edges. The finite strip transition
matrix is a semi-analytical approach which uses the finite strip method (also known as the Kantorovich
method) to transform the partial differential equation into a system of coupled fourth-order differential
equations. The transition matrix can be obtained for each strip by transforming the prescribed fourth-order
differential equations of the system into a system of four first-order ordinary differential equations which can
be represented exactly for the strip. The natural frequencies of the plates are obtained iteratively, as the values
that cause the transition matrix to be singular after imposing the particular boundary conditions across the
plates. The frequency parameters for such plates are obtained for different skew angles, fiber orientation
angles and laminated composites. The results are compared with the available results in the literature which
showed the accuracy and efficiency of the method.
2. Formulation of the problem and analysis

The governing equation of free flexural vibration of symmetrically laminated plate in rectangular
coordinates x, y is given by

D11
q4w
qx4
þ 4D16

q4w

qx3qy
þ 2ðD12 þ 2D66Þ

q4w
qx2qy2

þ 4D26
q4w
qxqy3

þD22
q4w
qy4
� rho2w ¼ 0 (1)

where w(x,y) is the flexural deflection, r is the density of the plate, o is the radian frequency, h is the thickness
of the plate and Di,j (i,j ¼ 1,2,6) are the flexural rigidities of the plate given by

Dij ¼

Z h=2

�h=2
Q̄

k

ijz
2 dz i; j ¼ 1; 2; 6 (2)

where Q̄
k

ij are the plane stress transformed reduced stiffness coefficients of the lamina in the laminate
coordinate system oxyz. They are related to the reduced stiffness coefficients of the lamina in the material axes
of the lamina Qk

ij by proper coordinate relationships that are available in many references e.g. Whitney [16]
and can be expressed in terms of the engineering notations as

Q11 ¼
E11

ð1� n12n21Þ
; Q22 ¼

E22

ð1� n21n12Þ
; Q12 ¼

n21E11

ð1� n12n21Þ
; Q21 ¼ Q12; and Q66 ¼ G12 (3)

where E11, E22 are the longitudinal and transverse Young’s moduli parallel and perpendicular to the fiber
orientation, respectively and G12 is the in plane shear modulus of elasticity, n12 and n21 are the Poisson’s ratios
in material coordinate system n12E2 ¼ n21E1. Using the skew coordinate system (u,v) as shown in Fig. 1

u ¼ x sec f and v ¼ y� x tan f (4)
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Fig. 1. The skew plate and non-dimensional oblique coordinate system.
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where f is the skew angle, then Eq. (1) can be re-written in term of the skew coordinates as

D11 sec
4 f

q4w
qu4
þ 4 sec3 f½D16 �D11 tan f�

q4w

qu3qv

þ 2 sec2 f½ðD12 þ 2D66Þ � 6D16 tan fþ 3D11 tan
2 f�

q4w

qu2qv2

þ 4 sec f½D26 � ðD12 þ 2D66Þ tan fþ 3D16 tan
2 f�D11 tan

3 f�
q4w
quqv3

þ ½D22 � 4D26 tan fþ 2ðD12 þ 2D66Þ tan
2 f� 4D16 tan

3 fþD11 tan
4 f�

q4w

qv4

� rho2w ¼ 0 (5)

For convenience, the following non-dimensional oblique coordinates are used

z ¼
u

a
and Z ¼

v

b
(6)

where a, b are the oblique dimensions of the plate. Assume the deflection function be in the form

wðz; Z; tÞ ¼
XR

m¼1

UmðzÞVmðZÞ eiot (7)

where o is the natural frequency of the skew plate, Um(z) the basic function along z, Vm(z) the unknown
function along the Z direction, and R the harmonic number of the truncated series. The most commonly used
basic function Um(z) is the eigen function derived from the solution of the differential equation of a beam
vibration under the prescribed boundary conditions of the plate at z ¼ 0,1. Substituting Eq. (7) into Eq. (6)
after normalization, multiplying both sides by Un(z) dz, integrating them from 0 to 1, the equation of motion
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may be then reduced to

XR

m¼1

anmAps

d4V m

qZ4
þ bnmBps

d3Vm

qZ3
þ ðcnmCpsÞ

d2Vm

qZ2
þ ðdnmDpsÞ

dV m

qZ
þ enmðEps � l2ÞV m

� �
¼ 0

n ¼ 1; 2; 3; . . . ;R (8)

where the frequency parameter l ¼ a2o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D22

p
and all other constants are defined in Appendix A.

The boundary conditions for clamped skew plate are

qw

qn
¼ sin f

qw

qx
� cos f

qw

qy
¼ 0 (9)

and since

w ¼ 0 (10)

Using Eq. (7), one can find that the boundary conditions at Z ¼ 0, Z ¼ 1 are hence

V ðZÞ ¼ 0 and
dV

dZ
¼ 0 (11)

The orthogonality conditions yield anm ¼ enm ¼ 0 for man. The fourth-order differential Eqs. (8) are
transformed into a 4R-number of first-order ordinary differential equations, and the following relation will be
then introduced at any nodal line j of the divided plate:

d

dZ
fvgj ¼ ½A�jfvgj; j ¼ 1; 2; 3; . . . ;N (12)

where

fvgj ¼ fv1 v2 � � � vk � � � vmg
T
j (13)

and

vk ¼ Vk

dVk

dZ
d2Vk

dZ2
d3Vk

dZ3

� �
(14)

The solution of the system of first-order differential equations can be thus carried out using the finite strip
transition matrix technique [12–16].

3. Results and discussion

The natural frequencies of the free vibration of skew laminated plates with fully clamped edges plates are
calculated. First, a convergence analysis is carried out and the results are compared with the available results
in the literature. A five-layer symmetric angle-ply [451/�451/451/�451/451] skew laminates with different skew
angles (f ¼ 01, 301, 451) are considered for this convergence analysis. The material properties of each layer are
given by E11/E22 ¼ 40, G12/E22 ¼ 0.6, u12 ¼ 0.25. Also, it is assumed that the laminates have a rhombic

geometry (a ¼ b). Table 1 shows the results of the natural frequencies O ¼ l=p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D22=E22h3

q
of the first six

modes of vibration with skew angles f ¼ 01, 301, 451 for different values of R varying from 2 to 7. These
presented results are demonstrated and compared with Wang [5] and Anlas and Goker [9]. It can be observed
that the finite strip transition matrix method presents good results and fast convergence. Then, three layer
(601/�601/601) E-glass/epoxy and graphite/epoxy laminates are considered in Tables 2 and 3, respectively for
different skew angles 01, 151, 451, and 601. The material properties of the graphite/epoxy are E11 ¼ 138.0GPa,
E22 ¼ 8.96GPa, G12 ¼ 7.1GPa, u12 ¼ 0.3 and that of the E-glass/epoxy are E11 ¼ 60.7GPa, E22 ¼ 24.8GPa,
G12 ¼ 11.99GPa, u12 ¼ 0.23. The results are calculated using 6 and 7 terms to demonstrate the convergence
of the solution and compared with Anlas and Goker [9] which are in very good agreement of Han
and Dickinson [6] and Hosokawa et al. [4]. It is important to point out that the date in Ref. [9] is presented for
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Table 2

Convergence and comparison of the first five frequency parameters for skew laminates with three layers.

R f (1) O1 O2 O3 O4 O5 O6

6 0 1.320 2.460 2.902 3.881 4.405 5.284

7 0 1.320 2.459 2.901 3.879 4.405 5.283

Ref. [9] 0 1.32 2.46 2.90 3.88 4.40 5.28

6 15 1.342 2.619 2.834 4.071 4.635 5.105

7 15 1.342 2.619 2.834 4.070 4.634 5.103

6 30 1.554 2.890 3.410 4.378 5.566 5.987

7 30 1.553 2.890 3.409 4.376 5.565 5.984

Ref. [9] 30 1.55 2.89 3.41 4.37 5.56 5.98

6 45 2.145 3.641 5.003 5.259 7.184 7.544

7 45 2.144 3.640 4.997 5.258 7.168 7.535

6 60 3.912 5.919 7.981 9.637 10.345 12.671

7 60 3.905 5.910 7.945 9.609 10.300 12.657

(601/�601/601) O ¼ l=p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D22=E22h3

q
.

Table 1

Convergence and comparison of the first five frequency parameters for skew laminates with five layers.

R f (1) O1 O2 O3 O4 O5 O6

2 0 3.929 7.259 8.806 12.069 14.818 18.597

3 3.925 7.178 8.558 11.301 13.678 15.132

4 3.907 7.164 8.502 11.270 13.376 14.896

5 3.906 7.155 8.485 11.233 13.367 14.821

6 3.903 7.152 8.472 11.230 13.338 14.792

7 3.902 7.160 8.409 11.354 13.304 13.320

Wang [5] 3.901 7.146 8.458 11.21 13.322 14.742

2 30 4.557 8.424 9.998 13.177 16.180 19.796

3 4.551 8.422 9.896 12.920 15.776 17.584

4 4.546 8.393 9.891 12.887 15.740 17.501

5 4.545 8.391 9.884 12.874 15.715 17.498

6 4.544 8.385 9.883 12.863 15.704 17.492

7 4.544 8.385 9.882 12.861 15.698 17.491

Wang [5] 4.543 8.382 9.881 12.853 15.691 17.489

2 45 6.411 11.381 15.269 18.192 24.837 28.367

3 6.334 10.868 14.673 15.838 22.678 22.854

4 6.318 10.857 14.560 15.553 21.218 22.154

5 6.310 10.831 14.528 15.518 21.193 22.130

6 6.308 10.838 14.511 15.490 21.093 22.088

7 6.306 10.823 14.504 15.482 21.091 22.082

Wang [5] 6.305 10.819 14.495 15.470 21.062 22.076

(451/�451/451/�451/451) O ¼ l=p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D22=E22h3

q
.
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301/�301/301 laminates and skew angle is 901 which is equivalent in our presentation to 601/�601/601 with a
skew angle of 01 and similarly for Skew angle 301 and 601/�601/601 which is equivalent to skew angle 60 and
301/�301/301.

It is observed that that the numerical accuracy and stability of the present method are insensitive to stacking
sequence of laminates, the degree of orthotropy of each layer, and the skew angles, even for such high skew
angle as 601, however the matrix becomes ill-conditioned when the number of terms used becomes higher,
especially for strong orthotropic material.
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Table 3

Convergence and comparison of the first five frequency parameters for skew graphite-epoxy laminates with three layers.

R f (1) O1 O2 O3 O4 O5 O6

6 0 2.471 3.780 5.714 6.044 7.601 8.053

7 0 2.470 3.777 5.713 6.039 7.584 8.029

Ref. [9] 0 2.47 3.77 5.70 6.03 7.56 8.03

6 15 2.273 3.927 5.207 6.206 7.303 8.882

7 15 2.273 3.925 5.206 6.204 7.295 8.880

6 30 2.374 4.651 4.949 7.352 8.155 8.786

7 30 2.374 4.651 4.949 7.352 8.155 8.786

Ref. [9] 30 2.37 4.65 4.95 7.35 8.15 8.76

6 45 3.017 5.581 6.611 8.606 10.440 11.759

7 45 3.017 5.581 6.609 8.603 10.437 11.758

5 60 5.232 8.410 11.965 12.483 16.096 17.561

7 60 5.230 8.405 11.963 12.472 16.065 17.544

(601/�601/601) O ¼ l=p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D22=E22h3

q
.
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4. Conclusions

The finite strip method is used to study the free vibration of skew laminated plates with fully clamped edges.
The accuracy and the efficiency of the method are examined by comparing the calculated results with the
available results in the literature for five symmetric laminates angle-ply layers problem. Then the effect of the
skew angle on the natural frequencies is investigated for three and five-layer symmetric angle-ply laminates
problems with different materials. As a result, we can conclude that the Finite Strip Transition Matrix can
provide efficient, accurate and fast convergence for the skew laminates.

Appendix A

anm ¼

Z 1

0

UnUm dz

bnm ¼

Z 1

0

Un

dUm

dz
dz

cnm ¼

Z 1

0

Un

d2Um

dz2
dz

dnm ¼

Z 1

0

Un

d3Um

dz3
dz

enm ¼

Z 1

0

Un

d4Um

dz4
dz

Eps ¼ c1 sec
4 f

Dps ¼ 4b sec3 f½c3 � c1 tan f�

Cps ¼ 2b2 sec2 f½c2 � 6c3 tan fþ 3c1 tan
2 f�

Bps ¼ 4b3 sec f½c4 � c2 tan fþ 3c3 tan
2 f� c1 tan

3 f�

Aps ¼ b4½1� 4c4 tan fþ 2c2 tan
2 f� 4c3 tan

3 fþ c1 tan
4 f�

where

c1 ¼
D11

D22
; c2 ¼

D12 þ 2D66

D22
; c3 ¼

D16

D22
; c4 ¼

D26

D22
; c5 ¼

D12

D22
; and b ¼ a=b
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